Extensions 1→N→G→Q→1 with N=C4 and Q=C25

Direct product G=NxQ with N=C4 and Q=C25
dρLabelID
C25xC4128C2^5xC4128,2319

Semidirect products G=N:Q with N=C4 and Q=C25
extensionφ:Q→Aut NdρLabelID
C4:C25 = D4xC24φ: C25/C24C2 ⊆ Aut C464C4:C2^5128,2320

Non-split extensions G=N.Q with N=C4 and Q=C25
extensionφ:Q→Aut NdρLabelID
C4.1C25 = C23xD8φ: C25/C24C2 ⊆ Aut C464C4.1C2^5128,2306
C4.2C25 = C23xSD16φ: C25/C24C2 ⊆ Aut C464C4.2C2^5128,2307
C4.3C25 = C23xQ16φ: C25/C24C2 ⊆ Aut C4128C4.3C2^5128,2308
C4.4C25 = C22xC4oD8φ: C25/C24C2 ⊆ Aut C464C4.4C2^5128,2309
C4.5C25 = C22xC8:C22φ: C25/C24C2 ⊆ Aut C432C4.5C2^5128,2310
C4.6C25 = C22xC8.C22φ: C25/C24C2 ⊆ Aut C464C4.6C2^5128,2311
C4.7C25 = C2xD8:C22φ: C25/C24C2 ⊆ Aut C432C4.7C2^5128,2312
C4.8C25 = C2xD4oD8φ: C25/C24C2 ⊆ Aut C432C4.8C2^5128,2313
C4.9C25 = C2xD4oSD16φ: C25/C24C2 ⊆ Aut C432C4.9C2^5128,2314
C4.10C25 = C2xQ8oD8φ: C25/C24C2 ⊆ Aut C464C4.10C2^5128,2315
C4.11C25 = C8.C24φ: C25/C24C2 ⊆ Aut C4324C4.11C2^5128,2316
C4.12C25 = D8:C23φ: C25/C24C2 ⊆ Aut C4168+C4.12C2^5128,2317
C4.13C25 = C4.C25φ: C25/C24C2 ⊆ Aut C4328-C4.13C2^5128,2318
C4.14C25 = Q8xC24φ: C25/C24C2 ⊆ Aut C4128C4.14C2^5128,2321
C4.15C25 = C22x2+ 1+4φ: C25/C24C2 ⊆ Aut C432C4.15C2^5128,2323
C4.16C25 = C22x2- 1+4φ: C25/C24C2 ⊆ Aut C464C4.16C2^5128,2324
C4.17C25 = 2+ 1+6φ: C25/C24C2 ⊆ Aut C4168+C4.17C2^5128,2326
C4.18C25 = 2- 1+6φ: C25/C24C2 ⊆ Aut C4328-C4.18C2^5128,2327
C4.19C25 = C23xM4(2)central extension (φ=1)64C4.19C2^5128,2302
C4.20C25 = C22xC8oD4central extension (φ=1)64C4.20C2^5128,2303
C4.21C25 = C2xQ8oM4(2)central extension (φ=1)32C4.21C2^5128,2304
C4.22C25 = C4.22C25central extension (φ=1)324C4.22C2^5128,2305
C4.23C25 = C23xC4oD4central extension (φ=1)64C4.23C2^5128,2322
C4.24C25 = C2xC2.C25central extension (φ=1)32C4.24C2^5128,2325

׿
x
:
Z
F
o
wr
Q
<